Identifying Amygdala-Like Territories in Scyliorhinus canicula (Chondrichthyan): Evidence for a Pallial Amygdala. Brain Behavior and Evolution, 96, 283–304
DOI: 10.1159/000519221
Developmental genoarchitectonics as a key tool to interpret the mature anatomy of the chondrichthyan hypothalamus according to the prosomeric model. Frontiers in Neuroanatomy, 16, Article 901451
DOI: 10.3389/fnana.2022.901451
Differential expression of five prosomatostatin genes in the central nervous system of the catshark Scyliorhinus canicula. Journal of Comparative Neurology, 528(14), 2333–2360
DOI: 10.1002/cne.24898
The Shark Basal Hypothalamus: Molecular Prosomeric Subdivisions and Evolutionary Trends. Frontiers in Neuroanatomy, 12, Article 17
DOI: 10.3389/fnana.2018.00017
Neurogenetic asymmetries in the catshark developing habenulae: mechanistic and evolutionary implications. Scientific Reports, 8, Article 4616
DOI: 10.1038/s41598-018-22851-3
A Developmental Study of the Cerebellar Nucleus in the Catshark, a Basal Gnathostome. Brain, Behavior and Evolution, 89(1), 1-14
DOI: 10.1159/000453654
Genoarchitecture of the rostral hindbrain of a shark: basis for understanding the emergence of the cerebellum at the agnathan-gnathostome transition. Brain Structure & Function, 221(3), 1321–1335
DOI: 10.1007/s00429-014-0973-8
Morphogenesis of the cerebellum and cerebellum-related structures in the shark Scyliorhinus canicula: insights on the ground pattern of the cerebellar ontogeny. Brain Structure & Function, 221(3), 1691–1717
DOI: 10.1007/s00429-015-0998-7
The Shark Alar Hypothalamus: Molecular Characterization of Prosomeric Subdivisions and Evolutionary Trends. Frontiers in Neuroanatomy, 10, Article 113
DOI: 10.3389/fnana.2016.00113
Prosomeric organization of the hypothalamus in an elasmobranch, the catshark Scyliorhinus canicula. Frontiers in Neuroanatomy, 9, Article 37
DOI: 10.3389/fnana.2015.00037
Tangential migratory pathways of subpallial origin in the embryonic telencephalon of sharks: evolutionary implications. Brain Structure & Function, 220(5), 2905–2926
DOI: 10.1007/s00429-014-0834-5
Developmental, tract-tracing and immunohistochemical study of the peripheral olfactory system in a basal vertebrate: insights on Pax6 neurons migrating along the olfactory nerve. Brain Structure & Function, 219(1), 85–104
DOI: 10.1007/s00429-012-0486-2
Development of the Cerebellar Afferent System in the Shark Scyliorhinus canicula: Insights Into the Basal Organization of Precerebellar Nuclei in Gnathostomes. Journal of Comparative Neurology, 522(1), 131–168
DOI: 10.1002/cne.23393
Development of the Terminal Nerve System in the Shark Scyliorhinus canicula. Brain, Behavior and Evolution, 84(4), 277–287
DOI: 10.1159/000367839
Glycine-immunoreactive neurons in the brain of a shark (Scyliorhinus canicula L.). Journal of Comparative Neurology, 521(13), 3057–3082
DOI: 10.1002/cne.23332
Dynamic expression of Pax6 in the shark olfactory system: evidence for the presence of Pax6 cells along the olfactory nerve pathway. Journal of Experimental Zoology Part B, Molecular and Developmental Evolution, 318(2), 79–90
DOI: 10.1002/jezb.21444
Pax6 expression during retinogenesis in sharks: comparison with markers of cell proliferation and neuronal differentiation. Journal of Experimental Zoology Part B, Molecular and Developmental Evolution, 318(2), 91–108
DOI: 10.1002/jezb.21448
Contributions of Developmental Studies in the Dogfish Scyliorhinus canicula to the Brain Anatomy of Elasmobranchs: Insights on the Basal Ganglia. Brain, Behavior and Evolution, 80(2), 127–141
DOI: 10.1159/000339871
Development of tyrosine hydroxylase-immunoreactive cell populations and fiber pathways in the brain of the dogfish Scyliorhinus canicula: New perspectives on the evolution of the vertebrate catecholaminergic system. Journal of Comparative Neurology, 520(16), 3574–3603
DOI: 10.1002/cne.23114
Regionalization of the shark hindbrain: a survey of an ancestral organization. Frontiers in Neuroanatomy, 5, Article 16
DOI: 10.3389/fnana.2011.00016
Development of descending supraspinal pathways in a shark and neurochemical characterization of projection neurons [Abstract]. International Journal of Developmental Neuroscience, 28(8), 668
DOI: 10.1016/j.ijdevneu.2010.07.080
Patterns of cell proliferation and rod photoreceptor differentiation in shark retinas. Journal of Chemical Neuroanatomy, 39(1), 1–14
DOI: 10.1016/j.jchemneu.2009.10.001
Calretinin immunoreactivity in the developing retina of sharks: comparison with cell proliferation and GABAergic system markers. Experimental Eye Research, 91(3), 378–386
DOI: 10.1016/j.exer.2010.06.011
A developmental approach to forebrain organization in elasmobranchs: new perspectives on the regionalization of the telencephalon. Brain, Behavior and Evolution, 74(1), 20–29
DOI: 10.1159/000229010
Calretinin-immunoreactive systems in the cerebellum and cerebellum-related lateral-line medullary nuclei of an elasmobranch, Scyliorhinus canicula. Journal of Chemical Neuroanatomy, 37(1), 46–54
DOI: 10.1016/j.jchemneu.2008.09.003
The segmental organization of the developing shark brain based on neurochemical markers, with special attention to the. Brain Research Bulletin, 75(2–4), 236–240
DOI: 10.1016/j.brainresbull.2007.10.048
Tangentially migrating GABAergic cells of subpallial origin invade massively the pallium in developing sharks. Brain Research Bulletin, 75(2–4), 405–409
DOI: 10.1016/j.brainresbull.2007.10.013
Early development of GABAergic cells of the retina in sharks: An immunohistochemical study with GABA and GAD antibodies. Journal of Chemical Neuroanatomy, 36(1), 6–16
DOI: 10.1016/j.jchemneu.2008.04.004
Development of the serotoninergic system in the central nervous system of a shark, the lesser spotted dogfish Scyliorhinus canicula. Journal of Comparative Neurology, 511(6), 804–831
DOI: 10.1002/cne.21857
Development of the cerebellar body in sharks: Spatiotemporal relations of Pax6 expression, cell proliferation and differentiation. Neuroscience Letters, 432(2), 105–110
DOI: 10.1016/j.neulet.2007.11.059
The Dogfish Scyliorhinus canicula: A Reference in Jawed Vertebrates. Cold Spring Harbor Protocols, 13, 431–446
DOI: 10.1101/pdb.emo111
Spatial organization of pax6-protein-containing cells, proliferating cells and differentiated cells in the embryonic shark forebrain [Abstract]. International Journal of Developmental Neuroscience, 24(8), 577–578
DOI: 10.1016/j.ijdevneu.2006.09.250
GABAergic system of the pineal organ of an elasmobranch (Scyliorhinus canicula): a developmental immunocytochemical study. Cell and Tissue Research, 323(2), 273–281
DOI: 10.1007/s00441-005-0061-8
Temporal and spatial organization of tyrosine hydroxylase-immunoreactive cell groups in the embryonic brain of an elasmobranch, the lesser-spotted dogfish Scyliorhinus canicula. Brain Research Bulletin, 66(4–6), 541–545
DOI: 10.1016/j.brainresbull.2005.02.010
Distribution and development of glutamic acid decarboxylase immunoreactivity in the spinal cord of the dogfish Scyliorhinus canicula (elasmobranchs). Journal of Comparative Neurology, 478(2), 189–206
DOI: 10.1002/cne.20285
Development of catecholaminergic systems in the spinal cord of the dogfish Scyliorhinus canicula (Elasmobranchs). Developmental Brain Research, 142(2), 141–150
DOI: 10.1016/S0165-3806(03)00062-2
Distribution of choline acetyltransferase immunoreactivity in the brain of an elasmobranch, the lesser spotted dogfish (Scyliorhinus canicula). Journal of Comparative Neurology, 420(2), 139–170
DOI: 10.1002/(SICI)1096-9861(20000501)420:2<139::AID-CNE1>3.0.CO;2-T
Marginal cells in the spinal cord of four elasmobranchs (Torpedo marmorata, T. torpedo, Raja undulata and Scyliorhinus canicula): evidence for homology with lamprey intraspinal stretch receptor neurons. European Journal of Neuroscience, 7(5), 934–943
DOI: 10.1111/j.1460-9568.1995.tb01081.x
Distribution of calcitonin gene-related peptide-like immunoreactivity in the brain of the small-spotted dogfish, Scyliorhinus canicula L. Journal of Comparative Neurology, 352(3), 335–350
DOI: 10.1002/cne.903520303
The nitric oxide synthase (NOS)-like immunoreactive extrahypophysial projections of the neurosecretory preoptic nucleus of the electric ray (Elasmobranchs) suggest a neuroregulatory role for this nucleus. Neuroscience Letters, 195(2), 85–88
DOI: 10.1016/0304-3940(95)11786-V
Microspectrofluorimetric study of monoamines in the hypothalamus of Scyliorhinus stellaris L. Journal für Hirnforschung, 34(1), 57–61
Organization of catecholaminergic systems in the hypothalamus of two elasmobranch species, Raja undulata and Scyliorhinus canicula. A histofluorescence and immunohistochemical study. Brain, Behavior and Evolution, 41(6), 290–302
DOI: 10.1159/000113850
Distribution of substance P-like immunoreactivity in the brain of the elasmobranch Scyliorhinus canicula. Journal of Comparative Neurology, 335(2), 228–244
DOI: 10.1002/cne.903350207
Immunocytochemical and electron-microscopic study of the elasmobranch nucleus sacci vasculosi. Cell and Tissue Research, 270(2), 395–404
DOI: 10.1007/BF00328023
Aminergic neurons in the hypothalamus of the dogfish, Scyliorhinus canicula L. (Elasmobranch). A histofluorescence study. Journal für Hirnforschung, 28(6), 685–693