NEWSLETTER 08/2019 12.08.2019

Please acknowledge use of the database www.shark-references.com in your publications, and cite: 

Pollerspöck, J. & Straube, N. 2019, Bibliography database of living/fossil sharks, rays and chimaeras (Chondrichthyes: Elasmobranchii, Holocephali), www.shark-references.com, World Wide Web electronic publication, Version 2019

New open access paper from Team Shark-references:

In addition to articulated, mostly formaldehyde-fixed and ethanol-preserved, taxidermy or anatomical specimens, sharks and rays are represented in scientific collections by numerous jaws and isolated teeth. These specimens often source from historical collections where existing informations about species, sex or geographic origin in many cases are scarce, incomplete or incorrect. The identification key for jaws and teeth presented herein focuses on squalomorph sharks, which comprise almost 34 % of all sharks with 179 species in 31 genera and 11 families. The key is essentially based on the following characters: vascularisation stage, labial apron, number of cusplets, distal heel, lingual ornamentation, cutting edge, and dentition kind. The key allows the identification to genus level. It is further supplemented by a comprehensive glossary of tooth morphological terms as well as an updated checklist of all currently described squalomorph sharks with indication of the distribution and the dental formula.

POLLERSPÖCK, J. & STRAUBE, N. 2019 An identification key to elasmobranch genera based on dental morphological characters Part A: Squalomorph sharks (Superorder Squalomorphii). Bulletin of Fish Biology, 18 (1/2): 77-105

free download via research gate



Would you like to become a shark-reference partner? Please contanct us per E-mail!



Partner in Google-Maps




New Images

Many thanks to the following people for providing images:

Frederik Mollen (Elasmobranch Research Belgium) for the images of Trygonorrhina fasciata MÜLLER & HENLE,1838, ERB 1198, female, 12,4 DW, 28,3 TL, Australia:

Many thanks to Jean-Francois LHOMME for the images of Nebrius thielensis (WINKLER, 1874):

Ioannis Giovos, www.isea.com.gr for images of Centrophorus uyato (RAFINESQUE, 1810), male, captured in Greece

Katherine Torres P. for a image of Urotrygon aspidura (JORDAN & GILBERT, 1882):

Natascha Wosnick and Isis Danniele Cury for head cross-section images of Rhizoprionodon lalandii (MÜLLER & HENLE, 1839):

Timo Moritz, Deutsches Meeresmuseum Stralsund, for cleared and stained specimen of Etmopterus spinax (LINNAEUS, 1758) and Amblyraja radiata (DONOVAN, 1808):

Missing papers:

Many thanks to all friends of shark-references, who sent us some missing papers last month!

Shark-References would kindly like to ask you for your contribution to this project.

At the moment we are looking for some of the following papers:

Extinct Chondrichthyes:

MATSUMOTO, H. (1936) Upper Miocene vertebrates from Kumanodô, Natori district, province of Rikuzen. Dobutsugaku Zasshi, 48: 475–480, 5 fig.

DERANIYAGALA, P.E.P. (1937) Some Miocene fishes from Ceylon. Ceylon Journal of Science, 20 (3): 355–367,9 fig.

KUDRIN, L.N. (1957) O nachodkach zubov akul v otlozenijach miocena jugozapadnoj okrainy Russkoj platformy (On some finds of the shark's teeth in the Miocene's deposits in the South-Western border of the Russian platform). Geol. Sborn. Lvov. Geol. Obsc. (Geol. J . of Geol. Soc. in Lvov), 4, Lvov.

BELTAN, L. (1959) Sur la présence du genre Carcharodon Müller et Henle dans le Miocène de la Martinique (Petites Antilles francaises). C.R. Sommaire des Seances de la Societe Geologique de France, 6: 156–158

ZBYSZEWSKI, G. & FERREIRA, O. DA V. (1962) La faune Miocène de l’île de Santa Maria (Açores). Comunicações dos Serviços Geológicos de Portugal, 46: 247–289

MENESINI, E. (1967) I Pesci miocenici delle Arenarie di Ponsano. Atti della Società Toscana di Scienze Naturali, Serie A, 74 (1): 1–22.

DERANIYAGALA, P.E.P. (1969) A Miocene vertebrate faunule from the Malu Member of Ceylon. Spolia Zeylan, 31: 551–570, 19 fig., 10 tabl.

CAPPETTA, H. (1969) Les gisements de vertébrés de la région montpelliéraine. 2. Gisements miocènes. Bulletin du Bureau de Recherches géologiques et minières, 2 (1): 19–30

COMASCHI CARIA, I. (1973) I pesci del Miocene della Sardigna. Stabilimento Tipografico Editoriale Fossataro, Cagliari. 39 pp.

ALVINERIE, J. & ANDREIEFF, P. & ANGLADA, R. & AUBERT, J. & CAPPETTA, H. & CARALP, M. & CARATINI, C. & CARBONNEL, G. & CATZIGRAS, F. & COURME-RAULT, M.-D. & CHATEAUNEUF, J.-J. & DEMARCQ, G. & DUCASSE, O. & FATTON, E. & GLAÇON, G. & LABRACHERIE, M. & LAURIAT, A. & LE CALVEZ, Y. & LORENZ, C. & MAGNE, J. & MARGEREL, J.-P. & POIGNANT, A. & PUJOL, C. & ROGER, J. & ROMAN, J. & BLONDEAU, A. & MULLER, C. (1973) A propos de la limite oligo-miocène: résultats préliminaires d'une recherche collective sur les gisements d'Escornébéou (Saint-Géours-de-Maremne, Landes, Aquitaine méridionale). Présence de Globigerinoides dans les faunes de l'Oligocène supérieur. Comptes rendus sommaires des séances de la Société géologique de France: 75–76

BALBINO, A.C. (1996) Sharks from the Middle and early Upper Miocene from Lisbon, Portugal. A check-list. Comunicações do Instituto Geológico e Mineiro, 82: 141–144

KOZLOV, V.A. (2001) (A new species of carcharhinid shark from the Lower Miocene sediments of Northern Aral region) «in russian». Materialy po Stratigrafii i Paleontologii Urala, 6: 92–95

BOYD, B.M. (2016) Fossil sharks and rays of Gainesville creeks; Alachua County, Florida: Hogtown group; (middle Miocene to lower Pliocene). Florida Paleontological Society, Special Publication

Extant Chondrichthyes:

DEVINCENZI, G.J. & TEAGUE, G.W. (1942) Ictiofauna del Rio Uruguay medio. Anales del Museo Nacional de Historia Natural de Montevideo, (Serie 2), 5 ( 4): 1–100 + index + i–viii, Pls. 1–6

KAMOHARA, T. (1943) Some unrecorded and two new fishes from Prov. Tosa, Japan. Bulletin of the Biogeographical Society of Japan, 13 (17): 125–137

DE BUEN, F. (1950) Contribuciones a la Ictiología. II. El tiburón vitamínico de la costa uruguaya Galeorhinus vitaminicus nov. sp., y algunas consideraciones generales sobre su biología. Publicaciones Cientificas, Servicio Oceanografico y de Pesca, Ministerio de Industrias y Trabajo, Montevideo No. 4: 153–162.

CADENAT, J. (1951) Initiations Africaines. III. Poissons de Mer du Sénégal. Institute Francais d'Afrique Noire. Initiations Africaines. III. Poissons de Mer du Sénégal.: 1–345

DE BUEN, F. (1952) El tiburón vitamínico de la costa Uruguaya, Galeorhinus vitaminicus nov. sp. y algunas consideraciones generales sobre su biologia. Rev. Fac.Hum.Cienc.Univ.Repúbl.Montevid., 7: 87–116

WEIBEZAHN, F.H. (1953) Una nueva especie de Scyliorhinus de Venezuela (Chondrichthyes - Elasmobranchii). Novedades cientificas. Serie zoológica. Museo de Historia Natural La Salle, 9: 1–7.

SMITH, J.L.B. (1958) The mystery killer, the new shark Carcharhinus vanrooyeni. Veld & Vlei, 3 (9): 12–14, 28.

SICCARDI, E. (1961) Cetorhinus en el Atlantico sur (Elasmobranchii: Cetorhinidae). Actas y trabajos del Primer Congreso Sudamericano de Zoologia, 4 (5): 251–263

CADENAT, J. (1963) Notes d'ichtyologie ouest-africaine. XXXIX. Notes sur les requins de la famille des Carchariidae et formes apparentées de l'Atlantique ouest-africain (avec la description d'une espèce nouvelle: Pseudocarcharias pelagicus, classée dans un sous-genre nouveau). Bulletin de l'Institut Français d'Afrique Noire (A), 25 (2): 526–537, 9 fig.

CASTEX, M.N. (1963) Una nueva especie de raya fluvial: Potamotrygon pauckei. Notas distintivas Boletín de la Academia Nacional de Ciencias (Córdoba), 43: 289–294

CADENAT, J. & MAUL, G.E. (1966) Note d'ichthyologie ouest-africaine. XLIII. Description d'une espèce nouvelle du genre Apristurus, A. maderensis. Bulletin de l'Institut Français d'Afrique Noire (A), 28 (2): 769–782

ABELLA, A. (1972) Halazgo de una nueva especie de Carcharinus en las costas de Rocha, Uruguay. Boletín de la Sociedad Zoológica del Uruguay, 2: 102–106

GUITART-MANDAY, D.J. (1972) Un nuevo género y especies de tiburón de la Familia Triakidae. Poeyana (Ser.A), 1972 (99): 1–4

GUBANOV, E.P. & SCHLEIB, N.A. (1980) Sharks of the Arabian Gulf. Kuwait Ministry of Public Works, Agracultural Department, Fisheries Division. Sharks of the Arabian Gulf.: 1–69

DOLGANOV, V.N. (1983) Rukovodstvo po opredeleniyu khryashchevykh ryb dal'nevostochnykh morei SSSR i sopredel'nykh vod. [Manual for identification of cartilaginous fishes of Far East seas of USSR and adjacent waters.] TINRO, Vladivostok. Rukovodstvo po opredeleniyu khryashchevykh ryb dal'nevostochnykh morei SSSR i sopredel'nykh vod.: 92 pp.

SHEN, S.-C. (1986) A new species of stingray Hexatrygon taiwanensis from Taiwan Strait. Journal of Taiwan Museum, 39 (1): 175–180

Please support www.shark-references.com and send missing papers (not listed papers or papers without the info-symbol) to juergen.pollerspoeck@shark-references.com or nicolas.straube@shark-references.com



Upcoming Meetings:

Annual Meeting of the Paleontological Society (Paläontologische Gesellschaft) 2019

logo_palges_201915 –18 September 2019 in Munich

We are happy to announce the Annual conference of the Paläontologische Gesellschaft (PalGes) in Munich. We aim to organize an international meeting at which cutting-edge research in the fields of palaeontology, geobiology and palaeobiology is presented. PalGes is one of the oldest and largest palaeontogical societies of the world and it is the fifth time that this conference is held in Munich (1950, 1960, 1985, 2010, 2019).

Munich is Bavaria’s beautiful capital situated at the foot of the Alps and surrounded by several picturesque lakes. It has been ranked among the top cities in terms of life quality, is famous for its museums and beer gardens. Munich is also a top place for natural sciences.

Symposia and workshops


  • Evolving ecosystems (Organizers: Alexander Nützel & Joachim Haug) more details
  • Fossil fishes in the context of evolution, environments and biogeography (Organizers: Bettina Reichenbacher, Tomas Přikryl & Gloria Arratia)
    more more details
  • Late Paleozoic and Mesozoic Plants and Floras (Organizers: Michael Krings, Benjamin Bomfleur & Christian Pott)
  • Mikropaläontologie (Organizer: Anna Pint)
  • Molecular Geobiology and Paleobiology (Organisation: Gert Wörheide, Dirk Erpenbeck, Sebastian Höhna, William Orsi) more details
  • Physiology in Deep Time (Organizers: Uwe Balthasar, Kenneth De Baets, Carl Reddin, Nussaïbah Raja Schoob) 
    more details


  • Total-evidence divergence time estimation from extinct and extant taxa (Convener: Sebastian Höhna) more details
  • Open data analysis and publication: from morphology to evolutionary patterns (Conveners: Emilia Jarochowska and Kenneth De Baets; Guest speakers: Melanie Hopkins & Stephan Lautenschlager) more details
for more information please visit


EEA Meeting 2019 in Rende


The Dipartimento di Biologia, Ecologia e Scienze della Terra – University of Calabria (DIBEST), Gruppo Italiano Ricercatori Squali, Razze e Chimere (G.R.I.S.) and the Centro Studi Squali (C.S.S.) are excited to organize the 23rd European Elasmobranch Association Meeting, which will take place in Rende (Italy) from the 16th to the 18th of October 2019.

We aim at creating a great forum where scientists, conservationists, students and all those interested in elasmobranchs will have an opportunity to share the results of their most exciting research, to look for synergies and find new collaborations.

During the conference, four plenary lectures, scientific sessions (orals and posters) and various workshops will take place. The sessions will deal with diverse topics, from evolutionary biology to ethology, from morphology to physiology, ecology and conservation. The conference will also include the Annual General Meeting of the EEA, multiple social activities, and the opportunity of exciting field underwater excursions. English will be the official conference language.

Please come back in the coming weeks to find out all the details about registration and related activities on the meeting’s website at www.dibest.unical.it/eea2019 and on the Facebook page at https://www.facebook.com/eea2019meeting/.

Provisional key dates are:

Call for abstracts and opening of registrations: 15th February 2019

End of reduced registration fees: 15th May 2019

Deadline of abstract submission: 15th June 2019

Communication of acceptance: Before August 30th




Dear colleagues,
We invite you to attend the XVI European Congress of Ichthyology, to be held in Lausanne, Switzerland on 2-6 September 2019. The scientific program will include sessions and symposia on taxonomy, phylogeny, anatomy, ecology, conservation, ethology, life history and other aspects of fish biology. Participants are encouraged to make oral and/or poster presentations. Ichthyologists wishing to organize a symposium on a specific topic are ecouraged to contact the organizers.

ORGANIZED BY: European Ichthyological Society
BOARD: Dr. Ivana Buj (president), University of Zagreb, Croatia
Dr. Jörg Bohlen, Institute of Animal Physiology and Genetics, Czech Republic
Dr. Alberto Teodorico Correia, University of Porto, Portugal
Dr. Maurice Kottelat, Delémont, Switzerland
Dr. Lukas Kalous, Czech University of Life Sciences, Prague, Czech Republic
Dr. Lukas Rüber, Natural History Museum, Bern, Switzerland

LOCAL ORGANIZING COMMITTEE will be announced soon.
WEB SITE: http://ichthyology.eu/congresses/actual-congresses/
CONTACT: ivana.buj@biol.pmf.hr (for administrative issues, registration etc.),
mkottelat@dplanet.ch (for technical and local issues, etc.)

CONFERENCE VENUE: All conference activities will be held at the Aquatis Hotel and in
the facilities of the Aquatis Aquarium, both situated in Lausanne, Switzerland. AquatisbAquarium is the largest freshwater aquarium and vivarium in Europe. Lausanne is situated on the shore of Lake Geneva and is recognized as the home of the international sport, hosting the International Olympic Committee, but, in September 2019, it will be the meeting point of European and world ichthyologists.


SOCIAL PROGRAMME: to be announced later

CONFERENCE FEE: will be included in the Second announcement
December 2018 – Second announcement released
1st February – registration and abstract submission opens
30th April – abstract submission closes
31st May – deadline for registration
30th June – deadline for the late registration

Looking forward to meeting you in Lausanne!


Extant Chondrichthyes:

No news this month!

Extinct Chondrichthyes:

POPOV, E.V. & DELSATE, D. & FELTEN, R. (2019): A New Callorhinchid Genus (Holocephali, Chimaeroidei) from the Early Bajocian of Ottange-Rumelange, on the Luxembourg-French Border. Paleontological Research, 23 (3): 220-230
New species: Ottangodus lotharingiae
Abstract: An incomplete chimaeroid (Holocephali, Chimaeroidei) mandibular dental plate from the early Bajocian (Humphriesianum Zone) of Ottange-Rumelange, on the Luxembourg-French border, is described as a new genus and species of callorhinchid fish Ottangodus lotharingiae gen. et sp. nov. Comparison of the described plate with other Jurassic chimaeriform fish (both myricanthid and chimaeroid) mandibular plates shows relationships with callorhinchids and in turn close relationships with the genus Pachymylus Woodward, known from the Callovian of England. The plate of the new genus shows a set of primitive characters for chimaeroids (very high descending lamina, low oral part of the plate, large centrally placed median tritor occupying most of the oral part of the plate and an absence of mesio-labial system of the tritors) and could thus belong to a basal Chimaeroidei taxon. This is the first record of the Chimaeroidei from the Jurassic of Lorraine and the fourth chimaeriform genus known from the Mesozoic of the region.
HOGANSON, J.W. & ERICKSON, M. & HOLLAND, F.D. (2019): Chondrichthyan and Osteichthyan Paleofaunas from the Cretaceous (Late Maastrichtian) Fox Hills Formation of North Dakota, USA: Paleoecology, Paleogeography, and Extinction. Bulletins of American Paleontology, 398: 1-94
New species: Cretalamna feldmanni, Dasyatis northdakotaensis, Myliobatis foxhillsensis
Abstract: As part of a study of the Vertebrata found in the Late Cretaceous (Early Maastrichtian to Middle Late Maastrichtian) Fox Hills Formation, 48 sites in western and central North Dakota were collected to interpret the chondrichthyan and osteichthyan paleofaunas. Based mostly on teeth, 19 shark species, 16 skate and ray species, and one ratfish species were recognized. Of those, three taxa are new, including Cretalamna feldmanni n. sp., “Myliobatis” foxhillsensis n. sp., and Dasyatis northdakotaensis n. sp. New chondrichthyan species occurrences for the Fox Hills Formation include: Squalus ballingsloevensis, Plicatoscyllium derameei, Cretorectolobus olsoni, Carcharias cf. C. tenuiplicatus, Cretalamna feldmanni n. sp., Paranomotodon toddi, Squalicorax pristodontus, Palaeogaleus navarroensis, Archaeotriakis rochelleae, Paraorthacodus andersoni, Synechodus turneri, Walteraja exigua, Dasyatis northdakotaensis n. sp., Rhombodus levis, “Myliobatis” foxhillsensis n. sp., and morphotypes of placoid scales and dermal denticles. Twenty species of bony fishes were identified from teeth and other skeletal parts, two were vertebral morphospecies, two were based on scales, and four were recognized from otoliths. New osteichthyan occurrences in the Fox Hills Formation include: a lepisosteid, Melvius sp., Cyclurus fragosus, Protosphyraena sp., Belonostomus longirostris, Xiphactinus vetus, Paratarpon? sp., Pollerspoeckia siegsdorfensis, cf. Bathylagus sp., Enchodus cf. E. ferox, and “Apogonidarum” maastrichtiensis. The Fox Hills Formation is Early Maastrichtian in Bowman County, southwestern North Dakota. The Bowman County sites yielded the oldest fossils of this study. Sites in the Fox Hills type area in north-central South Dakota and south-central North Dakota are Middle Late Maastrichtian based on the presence of Hoploscaphites nicolletii and Hoploscaphites nebrascensis Ammonite Zones and the Wodehousia spinata Pollen Zone. Age relationships of these fossil sites suggest temporal range extensions for several of the Fox Hills fish taxa. Fox Hills fishes were derived from deep and shallow marine, brackish, and freshwater habitats. Five groupings were identified based on qualitative assessment of these habitat preferences. These groupings are: “offshore marine,” “nearshore marine,” “brackish water/estuarine–strong tidal influence,” “brackish water/estuarine–weak tidal influence,” and “riverine/lagoonal–strong freshwater influence.” Tooth morphology and comparison to modern analogs indicate presence of the following feeding types: omnivore, general invertebrate, molluscivore, pelagic piscivore, benthic piscivore, and scavenger. Species representing all feeding types occur in each of the five habitat groupings. Feeding competition was thus partitioned by habitat preference. When coupled with paleogeographic distribution information, the Fox Hills fish fauna indicates that some taxa represent a recurring assemblage of species that have a “large-river delta” habitat preference, as found today on major deltas of most continents. Paleogeographic conditions in the Western Interior Seaway (WIS) were dominated by the physiographic conditions of the Hell Creek Delta and Dakota Isthmus complex, which is composed of lagoons, estuaries, and barrier island shorelines. The Fox Hills fish paleofauna includes taxa restricted to the WIS and those that also occurred in the Texas Gulf Coast, Mississippi Embayment, Atlantic Coastal Plain, Greenland, and Sweden. Pelagic, deep marine lamniform species were cosmopolitan and ranged to Europe and North Africa. The Fox Hills fish fauna is most similar to the fish faunas of the Maastrichtian Kemp Formation, Texas, Severn Formation, Maryland, and Navesink and New Egypt formations, New Jersey. The Fox Hills paleofauna documents fish extinction at the close of the Cretaceous. None of the 36 chondrichthyan species and none of the 20 osteichthyan species recovered from the Fox Hills Formation are found in the Paleocene worldwide. 58% of Fox Hills chondrichthyan and 77% of osteichthyan genera, and 20% of chondrichthyan and 33% of osteichthyan families, did not survive after the Cretaceous. Support for this interpretation is provided by comparison of the Fox Hills paleofauna to the Paleocene Cannonball Formation paleofauna in North Dakota. None of the 13 Cannonball chondrichthyan species, nor any of the four Cannonball osteichthyan species, occur in the Fox Hills Formation. Thirteen chondrichthyan genera (Squatina, Squalus, Ginglymostoma, Carcharias, Odontaspis, Cretalamna, Palaeogaleus, Galeorhinus, Paraothacodus, Synechodus, Myliobatis, Dasyatis, and Ischyodus) range across the K-Pg boundary.

OTERO, R.A. (2019): Myledaphus araucanus sp. nov. (Batomorphi, Rajiformes incertae sedis), a new Late Cretaceous ray from the austral Pacific, and first occurrence of the genus in the Southern Hemisphere. Cretaceous Research, 100: 82-90
New species: Myledaphus araucanus
Abstract: Isolated ray teeth have been frequently recorded in several Maastrichtian units of the Arauco Basin of central Chile. Up to now, the taxonomy of these specimens were broadly discussed, however, their historical taxonomic determinations lack good support. This contribution provides new evidence regarding the taxonomy, paleobiogeography and chronostratigraphic distribution of this material. For the first time, a partially articulated dental pavement is presented here. Histological analysis indicates affinities to Rajiformes, while morphologic features reveal affinities to the genus Myledaphus. The differences justify the erection of a new species, Myledaphus araucanus sp. nov. Myledaphus occurs in central Chile, being documented in three localities, with a widespread distribution along the Arauco Basin, ranging the lower Maastrichtian to the upper Maastrichtian, and having a latitudinal range between 33°21′ to 36°45′S. The presence of this genus in the southeastern Pacific during the Maastrichtian contrasts with the morphologically similar genus Hypolophodon previously documented from the Maastrichtian–Paleocene of the southwestern Atlantic. Such segregation between both oceans of southern South America suggests different biogeographic patterns for the marine fauna, reinforcing previous faunal segregations already observed among marine reptiles.



DARVISHI, F.A. & HASELI, M. (2019): Two new species of Phoreiobothrium Linton, 1889 (Cestoda: Onchoproteocephalidea) off southern Iran, completing the puzzle of Phoreiobothrium faunas in Rhizoprionodon acutusspecies complex. Parasitology Research, in press
New species: Phoreiobothrium rozatii, Phoreiobothrium golchini
Abstract: It has been shown that the milk shark, Rhizoprionodon acutus (Rüppell), is probably a complex of four narrowly distributed cryptic species. To confirm this hypothesis, the oioxenous species of the onchoproteocephalid genus Phoreiobothrium Linton, 1889 was recently used to recognize each shark species of this species complex so that Pnadiae Caira and Jensen, 2015, Pswaki Caira and Jensen, 2015, and Pjahki Caira and Jensen, 2015 were described respectively from Rhizoprionodon cf. acutus 1 off Senegal, R. cf. acutus 2 off northern Australia, and R. cf. acutus 3 off Borneo. Nonetheless, the Phoreiobothrium fauna of R. acutussensu stricto extending around the Arabian Peninsula remained unknown. In the present study, Pgolchini n. sp. is described from the fourth type of this shark species complex, i.e. R. acutussensu stricto, from the Persian Gulf. Given the oioxeny of the Phoreiobothrium species and the recent phylogeny of the milk shark species complex, if the hypothesis of the allopatric cospeciation of the members of the milk shark species complex and their cestodes is considered, it seems that scolex in Phoreiobothrium can diverge more rapidly in size and morphology than strobila. Furthermore, Prozatii n. sp. was described from one of the members of the hardnose shark species complex, i.e. Carcharhinus macloti (Müller and Henle), in the Gulf of Oman. This study provides the first data on the occurrence of the species of Phoreiobothrium in the Persian Gulf and the Gulf of Oman.

BENMESLEM, K. & RANDHAWA, H.S. & TAZEROUTI, F. (2019): Description of a new species of rhinebothriidean tapeworm from the skate Dipturus batis in the Mediterranean Sea. Journal of Helminthology, 93 (5): 589-600
New species: Echeneibothrium algeriensis
Abstract: Examination of rajid skates off the Algerian coast in the Mediterranean Sea revealed that three of the 33 Dipturus batis Linnaeus, 1758 examined harboured a new tapeworm species: Echeneibothrium algeriensis n. sp. This new species, collected from the anterior half of the spiral valves, is described on the basis of morphological data from light and scanning electron microscopy. The new species differs from previously described Echeneibothrium species by details of the scolex and loculi, total length, the length of the myzorhynchus, the number of proglottides, and the number of testes. Comparison of the diets of the ten skate species common in the Mediterranean basin indicates some varying degree of overlap, suggesting that host specificity in this host–parasite system is determined by other host and/or ecological variables such as adaptations of the parasites to their respective hosts, either on the morpho-anatomical level, in physiological characteristics of the parasite's habitat, in the trophic requirements for the successful transmission of the parasite, or in adaptations to the behavioural characteristics of the host. Furthermore, restricted overlap of E. algeriensis n. sp. with congeners in parasite assemblages of D. batis indicates some structuring according to attachment-site preferences. However, attachment-site preferences are not explained solely by morphological compatibility between bothridia and villi. This study reiterates the need to examine multiple factors synergistically in studies on host specificity of parasites, and the need to examine the parasite fauna of hosts across their entire geographical range in order to truly appreciate the biodiversity they harbour.
SHAMSI, S. & BARTON, D.P. & ZHU, X.C. (2019): Description and characterisation of Terranova pectinolabiata n. sp. (Nematoda: Anisakidae) in great hammerhead shark, Sphyrna mokarran (Ruppell, 1837), in Australia. Parasitology Research, 118 (7): 2159-2168
New species: Terranova pectinolabiata
AbstractTerranova pectinolabiata n. sp. is described from the great hammerhead, Sphyrna mokarran, from Australian waters. This represents the first report of a species of Terranova from the host species. The new species is characterised by the morphology of the caudal plates and labia. ITS sequences were obtained for 20 specimens which were identical, despite morphological variation that has traditionally been indicative of separation of species. Additionally, genetic analyses confirmed the identification of the larval Terranova Type II previously reported in Australian and New Caledonian waters as Terranova pectinolabiata n. sp.

RUIZ-ESCOBAR, F. & OCEGUERA-FIGUEROA, A. (2019): A new species of Branchellion Savigny, 1822 (Hirudinida: Piscicolidae), a marine leech parasitic on the giant electric ray Narcine entemedor Jordan & Starks (Batoidea: Narcinidae) off Oaxaca, Mexico. Systematic Parasitology, in press
New species: Branchellion spindolaorum
AbstractBranchellion spindolaorum n. sp. (Hirudinida: Piscicolidae) is described based on specimens found parasitising the giant electric ray Narcine entemedor Jordan & Starks off the coast of Oaxaca, Mexico. The new species can be clearly distinguished from the other species of Branchellion Savigny, 1822 by the presence of 30 pairs of lateral branchiae and 10 pairs of pulsatile vesicles. The definition of the genus Branchellion is expanded to include species with either 30, 31 or 33 pairs of foliaceous (plate-like) lateral branchiae in the urosome. In addition, we provide for the first time for the genus, scanning electron micrographs of the secondary suckers located on the ventral surface of the posterior sucker. Additionally, partial DNA sequences of the mitochondrial cytochrome c oxidase subunit 1 (cox1) were generated and compared with homologous sequences of other species of the genus. Branchellion spindolaorum n. sp. represents the fourth species of the genus known in the Eastern Pacific and the first record of a leech parasitising N. entemedor.
COLEMAN, G.M. & BEVERIDGE, I. & CAMPBELL, R.A. (2019): Caulobothrium pedunculatum sp. nov., a new species of cestode (Platyhelminthes) parasitic in Australian stingrays (Elasmobranchii: Batoidea). Transactions of the Royal Society of South Australia, in press
New species: Caulobothrium pedunculatum
Abstract: The cestode genus Caulobothrium Baer, 1948 is reported from the Australian region for the first time with the description of C. pedunculatum sp. nov. from the spiral intestine of the stingray Pastinachus ater(Macleay) (Dasyatidae) from the Northern Territory, Western Australia and Queensland. The new species is differentiated from congeners by the presence of 56–62 loculi per bothridium, two rows of paired loculi, the location of the genital pore and the distribution of the 60–91 testes in the mature segment.


PLEASE send your new papers to juergen.pollerspoeck@shark-references.com or nicolas.straube@shark-references.com   

Latest Research Articles

Extant Chondrichthyes:
BADASÁNCHEZ, E. & PÉREZJIMÉNEZ, J.C. & MARTÍNEZCRUZ, L.E. & MÉNDEZLOEZA, I. & SOSACORDERO, E. (2019) Fishery indicators during a predictable aggregation of Atlantic sharpnose sharks Rhizoprionodon terraenovae in the southern Gulf of Mexico: An alternative to assess a heterogeneous data‐poor fishery. Fisheries Management and Ecology, in press http://dx.doi.org/10.1111/fme.12366
BEALE, C.S. & STEWART, J.D. & SETYAWAN, E. & SIANIPAR, A.B. & ERDMANN, M.V. (2019) Population dynamics of oceanic manta rays (Mobula birostris) in the Raja Ampat Archipelago, West Papua, Indonesia, and the impacts of the El Nino-Southern Oscillation on their movement ecology. Diversity and Distributions, in press http://dx.doi.org/10.1111/ddi.12962
BOLANO-MARTINEZ, N. & HERNANDEZ-MUNOZ, S. & URIBE-ALCOCER, M. & GALVAN-MAGANA, F. & RITCHIE, P.A. & GARCIA-DE LEON, F.J. & DIAZ-JAIMES, P. (2019) Population genetic divergence as consequence of past range expansion of the smooth hammerhead shark Sphyrna zygaena. Hydrobiologia, 837 (1): 31-46 http://dx.doi.org/10.1007/s10750-019-3957-0
CARDENOSA, D. & MERTEN, W. & HYDE, J. (2019) Prioritizing global genetic capacity building assistance to implement CITES shark and ray listings. Marine Policy, 106: 103544 http://dx.doi.org/10.1016/j.marpol.2019.103544
CASHION, M.S. & BAILLY, N. & PAULY, D. (2019) Official catch data underrepresent shark and ray taxa caught in Mediterranean and Black Sea fisheries. Marine Policy, 105: 1-9 http://dx.doi.org/10.1016/j.marpol.2019.02.041
CONSALES, C. & CAGNAZZI, D. & MICARELLI, P. & SPERONE, E. & BROADHURST, M.K. & RIZZUTO, S. & SCHILLACI, F. & COPPOLA, D. & CARLETTI, L. & MARSILI, L. (2019) Sharks and organochlorine compounds: from Australia to South Africa passing by Mediterranean Sea. Abstract. In: 7th International Conference on Environmental Management, Engineering, Planning and Economics (CEMEPE 2019) and SECOTOX Conference. May. 
DAVIS, M.M. & SUAREZ-MOO, P.D. & DALY-ENGEL, T.S. (2019) Genetic structure and congeneric range overlap among sharpnose sharks (genus Rhizoprionodon) in the Northwest Atlantic Ocean. Canadian Journal of Fisheries and Aquatic Sciences, 76 (7): 1203-1211 http://dx.doi.org/10.1139/cjfas-2018-0019
DI SANTO, V. & BLEVINS, E.L. & LAUDER, G.V. (2019) Ocean acidification and warming affect skeletal mineralization in a marine fish. Proceedings of the Royal Society B: Biological Sciences, 286 (1894): 20182187 http://dx.doi.org/10.1098/rspb.2018.2187
DONNELLY, K.A. & STACY, N.I. & GUTTRIDGE, T.L. & BURNS, C. & MYLNICZENKO, N. (2019) Evaluation of Comprehensive Coelomic Fluid Analysis through Coelomic Pore Sampling as a Novel Diagnostic Tool in Elasmobranchs. Journal of Aquatic Animal Health, 31 (2): 173-185 http://dx.doi.org/10.1002/aah.10066
DUBOIS, A. & SERET, B. (2019) A justified emendation for a specific nomen of shark (Chondrichthyes), with comments on some Articles of the Code. Bionomina, 15: 59–62 http://dx.doi.org/10.11646/bionomina.15.1.5
DWYER, R.G. & CAMPBELL, H.A. & PILLANS, R.D. & WATTS, M.E. & LYON, B.J. & GURU, S.M. & DINH, M.N. & POSSINGHAM, H.P. & FRANKLIN, C.E. (2019) Using individual-based movement information to identify spatial conservation priorities for mobile species. Conservation Biology, in press http://dx.doi.org/10.1111/cobi.13328
ESTUPIÑÁN-MONTAÑO, C. & GALVÁN-MAGAÑA, F. & SÁNCHEZ-GONZÁLEZ, A. & ELORRIAGA-VERPLANCKEN, F.R. & DELGADO-HUERTAS, A. & PÁEZ-ROSAS, D. (2019) Dietary ontogeny of the blue shark, Prionace glauca, based on the analysis of δ13C and δ15N in vertebrae. Marine Biology, 166:101 http://dx.doi.org/10.1007/s00227-019-3550-0
FAYETTE, M.A. & ROSE, J.B. & HUNTER, R.P. & BOWMAN, M.R. & PROUDFOOT, J.S. (2019) Naïve-Pooled Pharmacokinetics of Ceftiofur Crystalline free Acid after single Intramuscular Administration in Smooth Dogfish (Mustelus canis). Journal of Zoo and Wildlife Medicine, 50 (2): 466-469 http://dx.doi.org/10.1638/2018-0104
FURUMITSU, K. & WYFFELS, J.T. & YAMAGUCHI, A. (2019) Reproduction and embryonic development of the red stingray Hemitrygon akajei from Ariake Bay, Japan. Ichthyological Research, in press http://dx.doi.org/10.1007/s10228-019-00687-9
GIOVOS, I. & STOILAS, V.O. & AL-MABRUK, S.A.A. & DOUMPAS, N. & MARAKIS, P. & MAXIMIADI, M. & MOUTOPOULOS, D. & KLEITOU, P. & KERAMIDAS, I. & TIRALONGO, F. & DE MADDALENA, A. (2019) Integrating local ecological knowledge, citizen science and long-term historical data for endangered species conservation: Additional records of angel sharks (Chondrichthyes: Squatinidae) in the Mediterranean Sea. Aquatic Conservation-Marine and Freshwater Ecosystems, 29 (6): 881-890 http://dx.doi.org/10.1002/aqc.3089
GUYOMARD, D. & PERRY, C. & TOURNOUX, P.U. & CLIFF, G. & PEDDEMORS, V. & JAQUEMET, S. (2019) An innovative fishing gear to enhance the release of non-target species in coastal shark-control programs: The SMART (shark management alert in real-time) drumline. Fisheries Research, 216: 6-17 http://dx.doi.org/10.1016/j.fishres.2019.03.011
HOWARD, S. & KAHUI, V. & ROCK, J. (2019) The opportunity cost of spiny dogfish (Squalus acanthias) bycatch in a ling (Genypterus blacodes) longline fishery. Marine Policy, 105: 38-43 http://dx.doi.org/10.1016/j.marpol.2019.04.005
HULL, K.L. & ASBURY, T.A. & DA SILVA, C. & DICKEN, M. & VERISSIMO, A. & FARRELL, E.D. & MARIANI, S. & MAZZOLDI, C. & MARINO, I.A.M. & ZANE, L. & MADUNA, S.N. & BESTER-VAN DER MERWE, A.E. (2019) Strong genetic isolation despite wide distribution in a commercially exploited coastal shark. Hydrobiologia, 838 (1): 121-137 http://dx.doi.org/10.1007/s10750-019-03982-8
IMASEKI, I. & WAKABAYASHI, M. & HARA, Y. & WATANABE, T. & TAKABE, S. & KAKUMURA, K. & HONDA, Y. & UEDA, K. & MURAKUMO, K. & MATSUMOTO, R. & MATSUMOTO, Y. & NAKAMURA, M. & TAKAGI, W. & KURAKU, S. & HYODO, S. (2019) Comprehensive analysis of genes contributing to euryhalinity in the bull shark, Carcharhinus leucas; Na+-Cl- co-transporter is one of the key renal factors upregulated in acclimation to low-salinity environment. Journal of Experimental Biology, 222 (12): UNSP jeb201780 http://dx.doi.org/10.1242/jeb.201780
KADAR, J. & LADDS, M. & MOURIER, J. & DAY, J. & BROWN, C. (2019) Acoustic accelerometry reveals diel activity patterns in premigratory Port Jackson sharks. Ecology and Evolution, in press http://dx.doi.org/10.1002/ece3.5323
KAI, M. (2019) Spatio-temporal changes in catch rates of pelagic sharks caught by Japanese research and training vessels in the western and central North Pacific. Fisheries Research, 216: 177-195 http://dx.doi.org/10.1016/j.fishres.2019.02.015
KANNO, S. & SCHLAFF, A.M. & HEUPEL, M.R. & SIMPFENDORFER, C.A. (2019) Stationary video monitoring reveals habitat use of stingrays in mangroves. Marine Ecology Progress Series, 621: 155-168 http://dx.doi.org/10.3354/meps12977
LAURENCE-CHASEN, J.D. & RAMSAY, J.B. & BRAINERD, E.L. (2019) Shearing overbite and asymmetrical jaw motions facilitate food breakdown in a freshwater stingray, Potamotrygon motoro. Journal of Experimental Biology, 222 (13): UNSP jeb197681 http://dx.doi.org/10.1242/jeb.197681
LEE, K.A. & SMOOTHEY, A.F. & HARCOURT, R.G. & ROUGHAN, M. & BUTCHER, P.A. & PEDDEMORS, V.M. (2019) Environmental drivers of abundance and residency of a large migratory shark, Carcharhinus leucas, inshore of a dynamic western boundary current. Marine Ecology Progress Series, 622: 121-137 http://dx.doi.org/10.3354/meps13052
LIM, K.C. & CHONG, V.C. & LIM, P.E. & YURIMOTO, T. & LOH, K.H. (2019) Feeding ecology of three sympatric species of stingrays on a tropical mudflat. Journal of the Marine Biological Association of the United Kingdom, 99 (4): 999-1007 http://dx.doi.org/10.1017/s0025315418000759
LYONS, K. & KACEV, D. & PRETI, A. & GILLETT, D. & DEWAR, H. & KOHIN, S. (2019) Species-Specific Characteristics Influence Contaminant Accumulation Trajectories and Signatures Across Ontogeny in Three Pelagic Shark Species. Environmental Science & Technology, 53 (12): 6997-7006 http://dx.doi.org/10.1021/acs.est.8b07355
MEJÍA-FALLA, P.A. & CASTRO, E.R. & BALLESTEROS, C.A. & BENT-HOOKER, H. & CALDAS, J.P. & ROJAS, A. & NAVIA, A.F. (2019) Effect of a precautionary management measure on the vulnerability and ecological risk of elasmobranchs captured as target fisheries. Regional Studies in Marine Science, 31: 100779 http://dx.doi.org/10.1016/j.rsma.2019.100779
MERLY, L. & LANGE, L. & MEYER, M. & HEWITT, A.M. & KOEN, P. & FISCHER, C. & MULLER, J. & SCHILACK, V. & WENTZEL, M. & HAMMERSCHLAG, N. (2019) Blood plasma levels of heavy metals and trace elements in white sharks (Carcharodon carcharias) and potential health consequences. Marine Pollution Bulletin, 142: 85-92 http://dx.doi.org/10.1016/j.marpolbul.2019.03.018
MORALES, N. & COGHLAN, A.R. & HAYDEN, G. & GUAJARDO, P. (2019) First sighting of a tropical benthic reef shark species at Rapa Nui: chance dispersal or a sign of things to come? Journal of Fish Biology, in press http://dx.doi.org/10.1111/jfb.13977
MORSE, P. & MOLE, M.A. & BESTER, M.N. & JOHNSON, R. & SCACCO, U. & GENNARI, E. (2019) Cape fur seals (Arctocephalus pusillus pusillus) adjust traversing behaviour with lunar conditions in the high white shark (Carcharodon carcharias) density waters of Mossel Bay, South Africa. Marine Ecology Progress Series, 622: 219–230 http://dx.doi.org/10.3354/meps13051
MOXLEY, J.H. & NICHOLSON, T.E. & VAN HOUTAN, K.S. & JORGENSEN, S.J. (2019) Non-trophic impacts from white sharks complicate population recovery for sea otters. Ecology and Evolution, 9 (11): 6378-6388 http://dx.doi.org/10.1002/ece3.5209
MUCIENTES, G. & QUEIROZ, N. (2019) Presence of plastic debris and retained fishing hooks in oceanic sharks. Marine Pollution Bulletin, 143: 6-11 http://dx.doi.org/10.1016/j.marpolbul.2019.04.028
NAJMUDEEN, T.M. & ZACHARIA, P.U. & SEETHA, P.K. & SUNIL, K.T.S. & RADHAKRISHNAN, M. & AKHILDEV, S. & SIPSON, A. (2019) Length-weight relationships of three species of pelagic sharks from southeastern Arabian Sea. Regional Studies in Marine Science, 29: Unsp 100647 http://dx.doi.org/10.1016/j.rsma.2019.100647
O'CONNELL, K.A. & DI SANTO, V. & MALDONADO, J. & MOLINA, E. & FUJITA, M.K. (2019) A Tale of Two Skates: Comparative Phylogeography of North American Skate Species with Implications for Conservation. Copeia, 107 (2): 297-304 http://dx.doi.org/10.1643/cg-18-114
OSIMANI, A. & FERROCINO, I. & AGNOLUCCI, M. & COCOLIN, L. & GIOVANNETTI, M. & CRISTANI, C. & PALLA, M. & MILANOVIĆ, V. & RONCOLINI, A. & SABBATINI, R. & GAROFALO, C. & CLEMENTI, F. & CARDINALI, F. & PETRUZZELLI, A. & GABUCCI, C. & TONUCCI, F. & AQUILANTI, L. (2019) Unveiling hákarl: A study of the microbiota of the traditional Icelandic fermented fish. Food Microbiology, 82: 560-572 http://dx.doi.org/10.1016/j.fm.2019.03.027
PARK, H.B. & LAM, Y.C. & GAFFNEY, J.P. & WEAVER, J.C. & KRIVOSHIK, S.R. & HAMCHAND, R. & PIERIBONE, V. & GRUBER, D.F. & CRAWFORD, J.M. (2019) Bright Green Biofluorescence in Sharks Derives from Bromo-Kynurenine Metabolism. iScience, 2019: in press http://dx.doi.org/10.1016/j.isci.2019.07.019
PEEL, L.R. & STEVENS, G.M.W. & DALY, R. & KEATING DALY, C.A. & LEA, J.S.E. & CLARKE, C.R. & COLLIN, S.P. & MEEKAN, M.G. (2019) Movement and residency patterns of reef manta rays Mobula alfredi in the Amirante Islands, Seychelles. Marine Ecology Progress Series, 621: 169-184 http://dx.doi.org/10.3354/meps12995
PINTE, N. & GODEFROID, M. & ABBAS, O. & BAETEN, V. & MALLEFET, J. (2019) Deep-sea sharks: Relation between the liver's buoyancy and red aerobic muscle volumes, a new approach. Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology, 236: 110520 http://dx.doi.org/10.1016/j.cbpa.2019.06.020
REDMOND, A.K. & ZOU, J. & SECOMBES, C.J. & MACQUEEN, D.J. & DOOLEY, H. (2019) Discovery of All Three Types in Cartilaginous Fishes Enables Phylogenetic Resolution of the Origins and Evolution of Interferons. Frontiers in Immunology, 10: 1558 http://dx.doi.org/10.3389/fimmu.2019.01558
RICHARDS, V.P. & DEBIASSE, M.B. & SHIVJI, M. (2019) Deep mitochondrial lineage divergence among populations of the southern stingray (Hypanus americanus (Hildebrand & Schroeder, 1928)) throughout the Southeastern United States and Caribbean. Marine Biodiversity, 49 (4): 1627–1634 http://dx.doi.org/10.1007/s12526-018-0930-5
ROYCROFT, E.J. & LE PORT, A. & LAVERY, S.D. (2019) Population structure and male-biased dispersal in the short-tail stingray Bathytoshia brevicaudata (Myliobatoidei: Dasyatidae). Conservation Genetics, 20 (4): 717-728 http://dx.doi.org/10.1007/s10592-019-01167-3
SALVO, A. & LA TORRE, G.L. & ROTONDO, A. & MANGANO, V. & GERVASI, T. & GERVASI, C. & VADALÀ, R. & BARTOLOMEO, G. & IARIA, C. & LANTERI, G. & CAPPARUCCI, F. & DUGO, G. (2019) Accumulation of PCBs, PAHs, plasticizers and inorganic elements in Hexanchus griseus from the Strait of Messina (central Mediterranean Sea). Natural Product Research, in press http://dx.doi.org/10.1080/14786419.2019.1601197
SCHAEFER, K.M. & FULLER, D.W. & AIRES-DA-SILVA, A. & CARVAJAL, J.M. & MARTINEZ-ORTIZ, J. & HUTCHINSON, M.R. (2019) Postrelease survival of silky sharks (Carcharhinus falciformis) following capture by longline fishing vessels in the equatorial eastern Pacific Ocean. Bulletin of Marine Science, 95 (3): 355-369 http://dx.doi.org/10.5343/bms.2018.0052
SEAMONE, S.G. & MCCAFFREY, T.M. & SYME, D.A. (2019) Disc starts: the pectoral disc of stingrays promotes omnidirectional fast starts across the substrate. Canadian Journal of Zoology, 97 (7): 597-605 http://dx.doi.org/10.1139/cjz-2018-0054
TORRES-PALACIOS, K. & MEJÍA-FALLA, P.A. & NAVIA, A.F. & CRUZ-ESCALONA, V.H. & FÉLIX-URAGA, R. & QUIÑONEZ-VELÁZQUEZ, C. (2019) Age and growth parameters of the Panamic stingray (Urotrygon aspidura). Fishery Bulletin, 117 (3): 45–55 http://dx.doi.org/10.7755/FB.117.3.4
WATANABE, Y.Y. & PAYNE, N.L. & SEMMENS, J.M. & FOX, A. & HUVENEERS, C. (2019) Hunting behaviour of white sharks recorded by animal-borne accelerometers and cameras. Marine Ecology Progress Series, 621: 221-227 http://dx.doi.org/10.3354/meps12981
WESTMORELAND, L.S.H. & ARCHIBALD, K.E. & CHRISTIANSEN, E.F. & BROADHURST, H.J. & STOSKOPF, M.K. (2019) The Mesopterygial Vein: A Reliable Venipuncture Site for Intravascular Access in Batoids. Journal of Zoo and Wildlife Medicine, 50 (2): 369-374 http://dx.doi.org/10.1638/2018-0137
WHITE, W.T. & BAJE, L. & SIMPFENDORFER, C.A. & APPLEYARD, S.A. & CHIN, A. & SABUB, B. & ROCHEL, E. & NAYLOR, G.J.P. (2019) Elasmobranch bycatch in the demersal prawn trawl fishery in the Gulf of Papua, Papua New Guinea. Scientific Reports, 9: 9254 http://dx.doi.org/10.1038/s41598-019-45715-w
WHITEHEAD, D. & GALVAN-MAGANA, F. & SOTO-LOPEZ, K. & JUARISTI-VIDEGARAY, D. & CERVANTES-GUTIERREZ, F. & BECERRIL-GARCIA, E.E. (2019) First description of a deceased juvenile whale shark Rhincodon typus in La Paz Bay, Mexico with comments on morphometry and age estimates. Latin American Journal of Aquatic Research, 47 (3): 575-579 http://dx.doi.org/10.3856/vol47-issue3-fulltext-19
WWF MEDITERRANEAN MARINE INITIATIVE & JEFFRIES, E. (2019) Sharks in Crisis: A Call to Action for the Mediterranean. Published in July 2019 by WWF – World Wide Fund For Nature, pp 40 
YOPAK, K.E. & MCMEANS, B.C. & MULL, C.G. & FEINDEL, K.W. & KOVACS, K.M. & LYDERSEN, C. & FISK, A.T. & COLLIN, S.P. (2019) Comparative Brain Morphology of the Greenland and Pacific Sleeper Sharks and its Functional Implications. Scientific Reports, 9: 10022  http://dx.doi.org/10.1038/s41598-019-46225-5

Extinct Chondrichthyes:
BOGAN, S. & AGNOLIN, F. & EZCURRA, M.D. (2019) Review of the enigmatic ‘shark’, Platyacrodus unicus Ameghino, 1935, from the Paleocene of Patagonia, Argentina: a history of palaeontologists, sharks and crabs. Zootaxa, 4646 (2): 293–300 http://dx.doi.org/10.11646/zootaxa.4646.2.5
CORTÉS, D. & DE GRACIA, C. & CARRILLO-BRICEÑO, J.D. & AGUIRRE-FERNÁNDEZ, G. & JARAMILLO, C. & BENITES-PALOMINO, A. & ENRIQUE, J. (2019) Shark-cetacean trophic interactions during the late Pliocene in the Central Eastern Pacific (Panama). Palaeontologia Electronica, 2019: 22.2.49 http://dx.doi.org/10.26879/953
FEICHTINGER, I. & KRANNER, M. & RUPP, C. & HARZHAUSER, M. (2019) A new outer neritic elasmobranch assemblage from the Egerian (late Oligocene) of the North Alpine Foreland Basin (Austria). Neues Jahrbuch für Geologie und Paläontologie, Abhandlungen, 293 (1): 19 - 35  http://dx.doi.org/10.1127/njgpa/2019/0828
FIALHO, P. & BALBINO, A. & ANTUES, M.T. (2019) Langhian rays (Chondrichthyes, Batomorphii) from Brielas, Lower Tagus Basin, Portugal. Geologica Acta, 17 (7): 1-16 http://dx.doi.org/10.1344/GeologicaActa2019.17.7
HOGANSON, J.W. & ERICKSON, M. & HOLLAND, F.D. (2019) Chondrichthyan and Osteichthyan Paleofaunas from the Cretaceous (Late Maastrichtian) Fox Hills Formation of North Dakota, USA: Paleoecology, Paleogeography, and Extinction. Bulletins of American Paleontology, 398: 1-94 
JOVANOVIĆ, G. & TRIF, N. & CODREA, V. & ĐURIĆ, D.  (2019) Middle Miocene shark teeth from the southern margin of the Pannonian Basin System (Serbia, Central Paratethys). Geološki anali Balkanskoga poluostrva, 80 (1): 29-43 
MORS, T. & HAGSTROM, J. & KAIM, A. & HRYNIEWICZ, K. (2019) First shark record (Chondrichthyes, Elasmobranchii) from the Paleogene of Spitsbergen, Svalbard. Polish Polar Research, 40 (2): 121-127 http://dx.doi.org/10.24425/ppr.2019.128370
OTERO, R.A. (2019) Myledaphus araucanus sp. nov. (Batomorphi, Rajiformes incertae sedis), a new Late Cretaceous ray from the austral Pacific, and first occurrence of the genus in the Southern Hemisphere. Cretaceous Research, 100: 82-90  http://dx.doi.org/10.1016/j.cretres.2019.03.025


BENMESLEM, K. & RANDHAWA, H.S. & TAZEROUTI, F. (2019) Description of a new species of rhinebothriidean tapeworm from the skate Dipturus batis in the Mediterranean Sea. Journal of Helminthology, 93 (5): 589-600 http://dx.doi.org/10.1017/s0022149x18000676
BERNOT, J.P. & CAIRA, J.N. (2019) Site specificity and attachment mode of Symcallio and Calliobothrium species (Cestoda: "Tetraphyllidea") in smoothhound sharks of the genus Mustelus (Carcharhiniformes: Triakidae). Peerj, 7: e7264 http://dx.doi.org/10.7717/peerj.7264
CHERO, J.D. & CRUCES, C.L. & SÁEZ, G. & CAMARGO, A.C.A. & SANTOS, C.P. & LUQUE, J.L. (2019) Redescription and First Nucleotide Sequences of Rhinobatonchocotyle pacifica Oliva & Luque, 1995 (Monogenea: Hexabothriidae), a Parasite of Pseudobatos planiceps (Garman, 1880) (Rhinopristiformes: Rhinobatidae) from Peru. Acta Parasitologica, in press http://dx.doi.org/10.2478/s11686-019-00101-4
COLEMAN, G.M. & BEVERIDGE, I. & CAMPBELL, R.A. (2019) Caulobothrium pedunculatum sp. nov., a new species of cestode (Platyhelminthes) parasitic in Australian stingrays (Elasmobranchii: Batoidea). Transactions of the Royal Society of South Australia, in press http://dx.doi.org/10.1080/03721426.2019.1624932
DARVISHI, F.A. & HASELI, M. (2019) Two new species of Phoreiobothrium Linton, 1889 (Cestoda: Onchoproteocephalidea) off southern Iran, completing the puzzle of Phoreiobothrium faunas in Rhizoprionodon acutus species complex. Parasitology Research, in press http://dx.doi.org/10.1007/s00436-019-06402-x
RUIZ-ESCOBAR, F. & OCEGUERA-FIGUEROA, A. (2019) A new species of Branchellion Savigny, 1822 (Hirudinida: Piscicolidae), a marine leech parasitic on the giant electric ray Narcine entemedor Jordan & Starks (Batoidea: Narcinidae) off Oaxaca, Mexico. Systematic Parasitology, in press http://dx.doi.org/10.1007/s11230-019-09872-w
SHAMSI, S. & BARTON, D.P. & ZHU, X.C. (2019) Description and characterisation of Terranova pectinolabiata n. sp. (Nematoda: Anisakidae) in great hammerhead shark, Sphyrna mokarran (Ruppell, 1837), in Australia. Parasitology Research, 118 (7): 2159-2168 http://dx.doi.org/10.1007/s00436-019-06360-4
TANG, K.N. & O'CONNOR, M.R. & LANDOLFI, J. & VAN BONN, W. (2019) Safety and Efficacy of Milbemycin Oxime and Lufenuron to Treat Argulus spp. Infestation in Smooth Back River Stingrays (Potamotrygon orbignyi) and Magdalena River Stingrays (Potamotrygon magdalenae). Journal of Zoo and Wildlife Medicine, 50 (2): 383-388 http://dx.doi.org/10.1638/2018-0162
YOUSSEF, F. & ZOUARI, S.T. & BENMANSOUR, B. (2019) New host-parasite records of siphonostomatoid copepods infesting elasmobranch fishes in Tunisian waters. Journal of the Marine Biological Association of the United Kingdom, 99 (4): 851-855 http://dx.doi.org/10.1017/s002531541800084x



Ancestor of the great white shark

Unique tooth structure of the great white shark gives new insights into its origin

Date: July 8, 2019
Source: University of Vienna
Summary: Mackerel sharks are a group consisting of some of the most iconic sharks we know, including the mako shark, the great white shark and Megalodon, the biggest predatory shark. Researchers found a unique feature in the teeth of these apex predators, which allowed them to trace back the origin of this group to a small benthic shark from the Middle Jurassic (165 mya).

Shark hotspots under worldwide threat from overfishing

A global study finds that even the remotest parts of the open ocean offer sharks little refuge from industrialized fishing

Date: July 25, 2019
Source: University of Miami Rosenstiel School of Marine & Atmospheric Science
Summary: Over 150 scientists from 26 countries combined movement data from nearly 2,000 sharks tracked with satellite tags. Using this tracking information, researchers identified areas of the ocean that were important for multiple species, shark 'hot spots', that were located in ocean frontal zones, boundaries in the sea between different water masses that are highly productive and food-rich.

Citizen scientists offer ray of hope

Date: July 31, 2019
Source: University of Queensland
Summary: Volunteer snorkelers and scuba divers have been helping capture images of reef manta rays to better protect the threatened species. Project Manta relied on these citizen scientists to photograph or video individual reef manta rays (Mobula alfredi) across Australia's east coast.

Mastering metabolism for shark and ray survival

Date: August 1, 2019
Source: University of Queensland
Summary: Understanding the internal energy flow -- including the metabolism -- of large ocean creatures like sharks and rays could be key to their survival in a changing climate, according to a new study. Researchers investigating the bioenergetics of sharks and rays; data which may reveal how they will fare in a drastically changing ocean.

Industrial fishing behind plummeting shark numbers

Research finds marine predators are significantly smaller and much rarer in areas closer to people

Date: August 6, 2019
Source: Zoological Society of London
Summary: A team of researchers has discovered that sharks are much rarer in habitats nearer large human populations and fish markets. The team also found that the average body size of sharks and other marine predators fell dramatically in these areas, where sharks are caught and killed intensively for their meat and fins.

Blue sharks use eddies for fast track to food

Date: August 7, 2019
Source: Woods Hole Oceanographic Institution
Summary: Blue sharks use large, swirling ocean currents, known as eddies, to fast-track their way down to feed in the ocean twilight zone.

These sharks use unique molecules to glow green

Date: August 8, 2019
Source: Cell Press
Summary: In the depths of the sea, certain shark species transform the ocean's blue light into a bright green color that only other sharks can see -- but how they biofluoresce has previously been unclear. Researchers have now identified what's responsible for the sharks' bright green hue: a previously unknown family of small-molecule metabolites.